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A new buffer region (absorbing layer, sponge layer, fringe region) technique for
computing compressible flows on unbounded domains is proposed. We exploit the
connection between coordinate mapping from bounded to unbounded domains and
filtering of the equations of motion in Fourier space in order to develop a model
to damp flow disturbances (advective and acoustic) that propagate outside an arbi-
trarily defined near field. This effectively simulates a free-space boundary condition.
Damping the solution in the far field is accomplished in a simple and effective way by
applying a filter (similar to that used in large-eddy simulation) on a mesh in Fourier
space, followed by a secondary filtering of the equations on the physical grid and
implementation of a model for the unresolved scales. The final form of the buffer
region is given in real space, independent of any discretization of the equations. Here
we use a dealiased, Fourier spectral collocation method to demonstrate the efficacy
of the buffer region for several model problems: acoustic wave propagation, con-
vection of a finite-amplitude vortex, and a viscous starting jet in two dimensions.
The results compare favorably to previous nonreflecting and absorbing boundary
conditions. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Many methods have been proposed for solving fluid flow equations on infinite or semi-
infinite domains. The domain may be mapped to a finite computational domain, or it may
be truncated at an artificial boundary. Mapping is problematic when disturbances become
poorly resolved as they propagate into regions of coarser mesh. In central finite-difference
(FD) schemes the disturbances can be shown to reflect from the mesh stretching, due to the
dispersive nature of the FD approximation [33]. Spectral methods for mapped infinite (or
highly stretched) domains are prone to similar artifacts due to aliasing of poorly resolved
disturbances. In either case these problems are particularly acute for aeroacoustic computa-
tions where small-amplitude radiation from the flow may easily be swamped by even small
artificial reflections.
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For these reasons, it is often preferable to impose an artificial boundary condition (ABC).
ABCs for multidimensional flows have been studied extensively for many years, but the
theory is limited to linear inviscid cases. We summarize some relevant conclusions here. For
flow linearized about a uniform state, there are a wide variety of techniques available that
are accurate and robust. Methods based on a Fourier/Laplace decomposition of the dis-
turbances into normal modes, originally proposed by Engquist and Majda [7], have been
extensively developed for the linearized Euler equations [10, 11] and were extended to an
arbitrarily high order of accuracy, in discretized form, by Rowley and Colonius [26]. Bound-
ary conditions based on asymptotic solutions of the linearized Euler equations for radiation
from a fixed (point) source have also been developed (see [30], and references therein), and
these offer similar accuracy to the low-order Fourier/Laplace conditions. A popular and
more robust alternative is the (nonlinear) one-dimensional characteristic-based boundary
conditions developed by Thompson [31, 32] and extended to viscous flows by Poinsot and
Lele [23]. Though these can lead to large reflections of multidimensional disturbances, they
can be improved when used in combination with the buffer region techniques described
below.

Another approach for the linearized Euler equations is the perfectly matched layer (PML),
in which the equations are altered in a buffer region near the artificial boundary in order
to absorb outgoing acoustic and advected disturbances prior to their interaction with the
artificial boundary. Early problems with the PML approach [1, 30] have been resolved and
well-posed (stable) layers can now be constructed for inviscid disturbances to a uniform
mean flow [2]. A caveat is that the approach depends on the (uniform) mean flow being
aligned with one of the coordinate directions near the boundary.

When these techniques are used in linear equations with nonconstant coefficients (i.e.,
spatial variation of the base flow) then there are additional reflections that scale with the
amplitude of the exiting disturbances and the gradients of the base flow, and for nonlinear
equations there are reflections that scale with the square of the exiting disturbances. These
reflections have been shown to dominate the solution under conditions that are typical of a
turbulent outflow boundary [4]. In order to mitigate these effects, a variety of ad hoc buffer
region techniques have been proposed for use in combination with ABCs. These include the
addition of an explicit damping term in a region near the boundary [3, 9, 14, 15], artificial
acceleration of disturbances to supersonic speed [29], and a combination of these [8]. On
the whole, these conditions can be effective and have led to accurate solution of a variety
of problems. A pitfall is that they rely on multiple constants (and functions) that have only
been determined by trial and error.

Another approach, which is most similar to the one proposed in the present paper, is
to introduce substantial mesh stretching in a region near the computation boundary, and
to provide damping or filtering in that region to attenuate disturbances as they propagate
through the layer [4, 24]. The filtering technique is particularly effective because as the
disturbances propagate through the stretched mesh they become progressively more poorly
resolved, whereby they may be removed by a low-order discrete filter. Again, this method
relies on several tunable parameters, such as the extent and rate of mesh stretching, and the
extent to which filtering and/or damping are applied.

Finally, in incompressible flow, the fringe region technique has been used to simulate
spatially evolving (inflow/outflow) problems using periodic (Fourier spectral) methods.
The technique, originally due to Spalart [27], involves adding a forcing term local to the
fringe region, which attempts to compensate for the periodicity by damping the difference
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between the periodic solution, and an approximate solution at the inflow boundary (which
is imposed). A detailed theoretical justification of Spalart’s technique was recently pro-
vided by Nordström et al. [22], who also discuss some other recent application of fringe
(or buffer) regions. A somewhat different approach for compressible boundary layers was
developed by Guo et al. [12]. In a buffer region near the periodic boundary, Guo et al.
windowed the governing equations to prevent recirculation of the flow across the peri-
odic boundaries. Specialized techniques were then developed in order to specify inflow
disturbances in the upstream buffer. The present method also uses a windowing of the gov-
erning equations but differs in the approach to correcting the solution for the presence of
windowing.

Given the increased use of buffer regions in a variety of problems, our motivation is to
develop a more general technique with fewer tunable parameters. In this paper, we provide
a model with two interpretations that help to establish a firm basis for its application.
The first interpretation is similar to the grid stretching and filtering approach, discussed
above. A second interpretation shows that the problem is analogous in some ways to the
problem of turbulence modeling in LES. This interpretation allows us to construct particular
correction terms (including damping) that are to be added to the equations in the buffer, by
analogy with a subgrid stress model. In the next section, we describe an analogy between
ABCs and multiscale turbulence modeling. In Section 3, the governing equations and the
model terms are presented. The relation of such models to previous buffer regions involving
grid stretching and filtering is also discussed. In Section 4, the method is demonstrated on
several model problems and compared to previous ABCs. Concluding remarks and possible
extensions of the method are placed in Section 5.

2. FOURIER ANALYSIS AND THE ANALOGY BETWEEN ABC AND LES

Consider LES on a domain consisting of a periodic box of length 2�L . If N Fourier
modes are retained in the solution, the grid spacing is �x = 2�L/N and disturbances with
a wavelength less than 2�x (corresponding to wavenumbers k > kmax = N/(2L)) cannot be
resolved. The impact of the unresolved scales must be modeled by supplying an appropriate
subgrid stress (SGS) model. In the absence of a model, energy continuously accumulates
at the highest wavenumbers supported by the mesh, and the periodic image (in Fourier
space) of the unresolved disturbances is spuriously returned into the calculation, eventually
contaminating the solution at all scales.

An analogous situation exists in physical space. Again considering a periodic domain,
the physical size of the periodic box, 2�L , sets a constraint on the size of the largest length
scale that can be computed in the box. This length scale also determines the resolution in
Fourier space, �k = 1

L . Disturbances that have finer structure in Fourier space correspond
to features larger than 2�L . Similarly waves propagating to the edge of the box, if unaltered,
reappear in physical domain in a process that is exactly analogous to aliasing but that takes
place in the physical domain.

Wave space aliasing (the subgrid modeling problem) can be mitigated by filtering high
wave numbers and providing a model for unresolved disturbances, the LES approach. This
is a smoothing operation in real space or, equivalently, a windowing operation in wave space.
Apparently, physical space aliasing (the ABC problem) could in principle be mitigated by
a similar process where the roles of wave space and real space are merely interchanged.
That is, the smoothing operation is performed in Fourier space (equivalent to a windowing
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operation in physical space) and a model should be provide for the unresolved (wave space)
scales. We propose such a model that is inspired by an existing LES model. It turns out that
the resulting model is also similar conceptually to grid stretching and damping disturbances
in a buffer region near the boundary.

The following terminology may help to further convey the analogy with LES: an artificial
boundary condition is, in a sense, a “super-grid-scale” model for length scales that are too
large to fit on the mesh (or that propagate to distances too large to be represented on the
mesh). A simulation utilizing such a boundary condition could be thought of as a “near-eddy
simulation,” in the sense that only near-field disturbances are directly resolved.

3. THE MODEL

3.1. Windowing

We begin with a conservation law in Cartesian coordinates, x ∈ �3,

∂ Q

∂t
+ ∂ Fj (Q)

∂x j
= 0, (1)

where Fj (Q) are the flux vectors. Following the analogy between LES and ABCs from the
last section, we wish to filter the Fourier transform of Eq. (1). We define a window function
H (x) and its Fourier transform, Ĥ (k), as

Ĥ (k) =
∫ ∞

−∞
H (x)e−i2�x·k dx, H (x) =

∫ ∞

−∞
Ĥ (k)ei2�x·k dk. (2)

For H we have in mind a typical windowing function from signal processing that is the
product of three separate windowing operations in the three coordinate directions,

H (x) = h1

(
x1

L1

)
h2

(
x2

L2

)
h3

(
x3

L3

)
, (3)

where L1, L2, and L3 are the characteristic widths of the window in the three coordinate
directions. A sketch of a typical window and its Fourier transform are depcited in Fig. 1.

h1(x) h (k)

x

L

k

~ 1 / L

FIG. 1. Sketch of typical window function, h j , and its Fourier transform, ĥ j .
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Multiplying Eq. (1) by the window we write

∂ Q̃

∂t
+ H (x)

∂ Fj (Q)

∂x j
= 0, (4)

where

Q̃ = H (x)Q ˆ̃Q = Ĥ (k) ∗ Q̂(k). (5)

An asterisk, ∗, denotes convolution over �3.
In order to close this equation, we must model the original dependent variable, Q, as a

function of the windowed version, Q̃. Following a typical LES derivation (see, for example,
Meneveau and Katz [19]) would lead to a supergrid-scale term on the right-hand side:1

∂ Q̃

∂t
+ ∂ Fj (Q̃)

∂x j
= ∂ Fj (Q̃)

∂x j
− H

∂ Fj (Q)

∂x j
. (7)

However, we follow here a different approach that is more akin to the idea of directly
modeling the subgrid velocity field (e.g., [6, 28]). To this end, we return to Eq. (4) and
pursue the singular process of forming

Q = H−1 Q̃, (8)

or its equivalent in wave space,

Q̂ = Ĥ−1 ∗ ˆ̃Q. (9)

A direct regularization of the deconvolution in Eq. (9) has proven useful in the analogous
(real space) version of this equation that arises in LES. Stolz and Adams [28], for example,
have developed an LES model that utilizes an approximate (regularized) inverse filter,

G−1 ≈
N∑

�=0

(I − G)�, (10)

where N = 5 gave the best results in their numerical experiments.
For Eq. (9), the zeroth-order approximation is simply Ĥ−1 = 1, which recovers the limit

L j → ∞ (no windowing), for each j , and makes Q = Q̃. The regularized version of Eq. (4)
is then, simply,

∂ Q̃

∂t
+ H

∂ Fj (Q̃)

∂x j
= 0. (11)

1 We note in passing that in the case of inviscid flow, for which Fj (Q) is homogeneous of degree 1 (i.e.,
Fj (�Q) =�Fj (Q)), the right-hand side of Eq. (7) may be formally manipulated to obtain a closed-form equation
for the windowed variables:

∂ Q̃

∂t
+ ∂ Fj (Q̃)

∂x j

= ∂ H

∂x j

Fj (Q) = 1

H

∂ H

∂x j

Fj (Q̃). (6)

Furthermore, Eq. (6) is not singular provided that the gradient of H decays to zero faster than H as x → ∞.
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This is crude, amounting to no model at all for the supergrid. But together with further
modeling, discussed in Section 3.3, it yields good results (Section 4). It seems that alternative
models to those derived below could be based on attempts to model the right-hand side of
Eq. (7) or to directly regularize Eq. (9) to higher order.

3.2. Comparison of Windowing and Grid Stretching

Before completing the model, it is instructive to compare Eq. (11) with the original
conservation law (1), but under a suitable coordinate transformation that maps the infinite
computational domain, x, to a finite one, y ∈ ((−L1, L1), (−L2, L2), (−L3, L3)). We rec-
ognize that the window functions, h j , that have already been defined are suitable choices
for such a mapping; i.e.,

dy j

dx j
= h j , j = 1, 2, 3 (no summation implied), (12)

which yields

∂ Q

∂t
+

3∑
j=1

h j
∂ Fj (Q)

∂y j
= 0. (13)

The function h j is suitable because, in the form sketched in Fig. 1, it provides for a near-field
region with uniform grid spacing, and a rapid expansion of the grid to infinity. Equation (13)
is nearly identical to Eq. (11), differing only in small regions near the corners and edges
of the three-dimensional box, where two or more of the individual functions h j comprising
H are simultaneously different from unity.2

The similarity of Eqs. (13) and (11) shows an important connection with the buffer region
treatment in Ref. [4], where a region of exaggerated mesh stretching (though not infinite)
was used in combination with filtering in a region near the artificial boundaries. That is,
the effect of windowing should, at least to the crude level of approximation of Eq. (11), be
similar to the effect of grid stretching.

3.3. Filtering

We return now to Eq. (11) and recall that we have filtered the equations in Fourier space
(windowed in real space) but have yet to provide any model for the unresolvable (supergrid)
disturbances. This model needs to eliminate poorly resolved disturbances near the boundary.
To make further progress, we propose to filter Eq. (11) once again, but now in physical space.
Consider a filter, G(x), and its Fourier transform, Ĝ(k). Again we have in mind a filter that
is the product of filter functions in each of the three coordinate directions,

G(x) = g

(
x1

�

)
g

(
x2

�

)
g

(
x3

�

)
, (14)

2 Another difference between Eqs. (13) and (11), irrelevant to the present discussion, is that for viscous flow the
derivatives within Fj (Q) in Eq. (13) would also need to be transformed according to Eq. (12).
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where the � controls the width of the filter. Filtering Eq. (11), we obtain

∂ ¯̃Q

∂t
+ G ∗

(
H

∂ Fj (Q̃)

∂x j

)
= 0, (15)

where

¯̃Q(x) = G ∗ Q̃(x). (16)

Further development of Eq. (15) requires either regularizing the singular inversion of
Eq. (16) or modeling its second term. This is identical to the problem of constructing a
model for LES, except for the additional windowing factor, H . There are, of course, a large
number of models and subsequent refinements that have been proposed for LES (see, for
example, Meneveau and Katz [19]).

In the present work, we apply a line of reasoning that is motivated by the tensor diffusivity
model for LES (e.g., [17, 18]). This model uses a Taylor series expansion of the filtered
product of two arbitrary functions, f and h,

f h = f̄ h̄ − c
�2

2

∂ f̄

∂x j

∂ h̄

∂x j
+ · · · , (17)

where c is a numerical constant that depends on the particular choice for G (c = 1 for a
Gaussian filter). Equation (17) holds under fairly general circumstances. Proceeding along
these lines, we may expand (15), to O(�4), as

∂ ¯̃Q

∂t
+ H̄

∂ Fj (Q̃)

∂x j
= c

�2

2

∂ H̄

∂xk

∂2 Fj (Q̃)

∂x j∂xk
. (18)

By similar arguments, it is obviously possible to expand any filtered quantity to O(�4),

f̄ = f − c
�2

4

∂2 f

∂x j∂x j
+ · · · = f − c

�2

4

∂2 f̄

∂x j∂x j
+ · · · , (19)

and using this in Eq. (18) we obtain, again to O(�4),

∂ ¯̃Q

∂t
+

(
H + c

�2

4

∂2 H

∂xk∂xk

)
∂ Fj (Q̃)

∂x j
= c

�2

2

∂ H

∂xk

∂2 Fj (Q̃)

∂x j∂xk
. (20)

Although Eq. (18) is equivalent to Eq. (20) to O(�4), the solutions will differ when im-
plemented numerically. We prefer Eq. (20) because the effect of the modeled terms are
localized to the region near the boundary where H is less than unity and the gradient of H
is nonzero. In the interior where H is constant Eq. (20) is equivalent to the filtered version
of Eq. (1).

3.4. Stability

In applying the tensor diffusivity model to LES, it is not guaranteed that the model is
locally dissipative [18, 20]. Nondissipative behavior can in turn lead to numerical instability,
especially when finite-difference schemes are used for discretization.
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It is easy to see that in the present context, the term on the right-hand side of Eq. (20) can
represent diffusion with a viscosity of either sign and is therefore a concern. We show this by
considering the special case of a one-dimensional flow that consists of small disturbances
to an otherwise uniform flow state. In this case the fluxes can be linearized such that

∂ F1(Q̃)

∂x1
= A0

∂ Q̃

∂x1
, (21)

where A0 is the linearized flux Jacobian tensor (with constant coefficients). Differentiating
a second time to form the right-hand side of Eq. (20), we have

∂ ¯̃Q

∂t
+

(
H + c

�2

4

d2 H

dx2
1

)
A0

∂ Q̃

∂x1
= c

�2

2

d H

dx1
A0

∂2 Q̃

∂x2
1

. (22)

The sign of the dissipation therefore depends on the sign of d H
dx1

and the eigenvalues of the flux
Jacobian, A0. For the type of window we have in mind, the derivative of H would be posi-
tive near x1 = −L1 and negative near x1 = L1. Outgoing waves correspond to negative
eigenvalues near x1 = −L1 and to positive eigenvalues near x1 = L (with, of course, the
opposite signs for incoming waves). Thus the tensor diffusivity term, in the linearized one-
dimensional limit, corresponds to diffusion for incoming waves, but the outgoing waves
would be amplified by a negative diffusivity, which would make the scheme unstable.

We remedy this situation by employing a flux-splitting technique on the right-hand side
of Eq. (20), and subsequently reversing the sign of the fluxes that represent incoming waves
(in the one-dimensional sense). To do this, we first neglect any viscous terms in Fj (Q̃)
(only in the right-hand side of Eq. (18)), and next we split the flux term (∂ Fj (Q̃))/∂x j into
positive and negative eigenvalues,

∂ Fj (Q̃)

∂x j
= Ã j

∂ Q̃

∂x j
= (

S̃ j�̃
+
j S̃−1

j + S̃ j�̃
−
j S̃−1

j

) ∂ Q̃

∂x j
, (23)

where the columns of Sj are the right eigenvectors of A j and �± are diagonal matrices
containing the positive and negative eigenvalues. In Eq. (20), this term is multiplied by the
gradient of the window function which is negative near the right edge of the computational
domain and positive near the left edge. We therefore wish to change the signs of the overall
term (eignvalue times gradient of H ) to positive on both sides. This can be accomplished,
albeit crudely, by taking absolute values in both terms, to obtain

∂ ¯̃Q

∂t
+

(
H + c

�2

4

∂2 H

∂xk∂xk

)
∂ Fj (Q̃)

∂x j
= c

�2

2

∣∣∣∣∂ H

∂xk

∣∣∣∣ ∂

∂xk

((
S̃ j |�̃+

j |S̃−1
j + S̃ j |�̃−

j |S̃−1
j

) ∂ Q̃

∂x j

)
.

(24)

It should be stressed that we have not modified the original fluxes, Fj , appearing on the
left-hand side.

We found, through experimentation, that Eq. (24) is effective in actual computations,
but that a simplified approach for the right-hand side performed just as well. This involves
replacing the flux splitting on the right-hand side with the maximum eigenvalue of A j over
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the entire domain.3 The eigenvalues of A j are, of course, just u j , u j + a, u j − a, where u j

is the velocity and a is the sound speed. These, in turn, can be closely estimated based on
a typical Mach number of the flow of interest, to yield

∂ ¯̃Q

∂t
+

(
H + c

�2

4

∂2 H

∂xk∂xk

)
∂ Fj (Q̃)

∂x j
= c

�2

2
atyp(Mtyp + 1)

∣∣∣∣∂ H

∂xk

∣∣∣∣ ∂2 ¯̃Q

∂x j∂xk
, (25)

where atyp and Mtyp are characteristic sound speed and Mach numbers for the particular
flow of interest.

A further simplification can serve to significantly speed up the computation. We first
replace H with h1h2h3, and in each individual flux in Eq. (24) (i.e., the sum over j) we
replace the window functions transverse to the particular direction with unity. This only
modifies the model at the corners of a two-dimensional domain, and at the corners and
edges of a three-dimensional domain, as was discussed in Section 3.2. We obtain

∂ ¯̃Q

∂t
+

3∑
j=1

(
h j + c

�2

4
h′′

j

)
∂ Fj (Q̃)

∂x j
= c

�2

2
atyp(Mtyp + 1)

3∑
j=1

|h′
j |

∂2 ¯̃Q

∂x j∂x j
. (26)

Finally, we note that for the filter expansions discussed in Section 3.3, we require that
�2 ∼ �x2, where �x is the near-field grid spacing. For simplicity, we choose a Gaussian
filter which gives c = 1 and we choose a grid cutoff of 2 points per wavelength which gives
� = 2�x . Note that when the mesh spacing is unequal in different coordinate directions,
�x may be brought inside the summations in Eq. (29) and replaced with �x j . Thus, we
finally obtain

∂ ¯̃Q

∂t
+

3∑
j=1

(h j + (�x j )
2h′′

j )
∂ Fj (Q̃)

∂x j
= 2atyp(Mtyp + 1)

3∑
j=1

(�x j )
2|h′

j |
∂2 ¯̃Q

∂x j∂x j
. (27)

This is the central result of this paper. As written, it remains to be closed by relating the
filtered and windowed variables, Q̄, to the windowed variables, Q̃, through the choice of
an appropriate filter, G, and an appropriate LES turbulence model (if any). These issues are
discussed in the next section. It is shown in Section 4 that the model is effective and robust
in practice.

While the modifications presented in the section are entirely ad hoc, it is shown in
Section 4 that the overall model is surprisingly effective and robust in practice. It could
certainly be argued that there is no reason, at this stage, to prefer the present model to buffer
regions that have been based on other ad hoc arguments (which were discussed in Section 1).
On the other hands, it seems that viewing the effect of the buffer region as a filtering of the
equations in wave space, supplemented by a model for the unresolved scales, is a useful
way to think about the problem, as it provides a framework into which other models (e.g.,
eddy viscosity, approximate deconvolution) or refinements to the present method could be
inserted in future work.

3 As pointed out by a referee, this is similar to using the Lax–Friedrich flux in standard flux splitting, which is
known to be very dissipative.
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3.5. Closure for LES and DNS

We are left in Eq. (27) with the filtered Navier–Stokes equations, including the supergrid
model, but these equations are not yet closed because we have not written the filtered flux,
Fj (Q̃), in terms of the filtered dependent variables Q̃. This is the standard LES problem, for
which there are many possible subgrid models to choose from. A discussion of the relative
merits is beyond the scope of the present paper. A standard approach would be to rewrite
Eq. (26) as

∂ ¯̃Q

∂t
+

3∑
j=1

(h j + (�x j )
2h′′

j )
∂ Fj ( ¯̃Q)

∂x j

=
3∑

j=1

(h j + (�x j )
2h′′

j )
∂ Fj ( ¯̃Q) − Fj (Q̃)

∂x j
+ 2atyp(Mtyp + 1)

3∑
j=1

(�x j )
2|h′

j |
∂2 ¯̃Q

∂x j∂x j
, (28)

where Fj ( ¯̃Q) − Fj (Q̃) is the subgrid stress tensor (SGS).
It is also desirable to have a DNS version of the supergrid model, whereby the equations

reduce to the full Navier–Stokes equations everywhere except the buffer region. This can
be accomplished by noting that in the DNS limit, we have ¯̃Q = Q̃, and we merely remove
the overbars in Eq. (28) to obtain

∂ Q̃

∂t
+

3∑
j=1

(h j + (�x j )
2h′′

j )
∂ Fj (Q̃)

∂x j
= 2atyp(Mtyp + 1)

3∑
j=1

(�x j )
2|h′

j |
∂2 Q̃

∂x j∂x j
. (29)

In the DNS limit, an examination of Eq. (29) reveals that in the interior where each h j = 1,
the equations reduce to the full Eq. (1).

3.6. The Window Function and Tunable Parameters

Before Eqs. (28) and (29) can be used for computation, the window functions, h(x), must
be specified in each coordinate direction. Note that for ease of notation we suppress the
subscript j in this section. In what follows, we are referring to any (or each) of the three
coordinate directions.

There will appear in the window function several parameters which fall into two cat-
egories. First are those parameters that are to be determined based on the physics of the
flow to be computed, such as the near-field grid spacing, �x , and on the extent in each
coordinate direction of the physical portion of the domain (where the window function is
unity), denoted here by L . Similarly, characteristic sound speed and Mach number (atyp,
Mtyp) appearing in Eqs. (28) and (29) are also determined by the particular flow considered.

The second category includes “tunable” parameters that can be chosen to give the best
results (i.e., nonreflectivity). It is shown here that these can be essentially reduced to two
free parameters. To begin with, the window function h(x) in Eqs. (28) and (29) can be
concocted from different elementary functions that will give the desired behavior, shown
in Fig. 1. We assume without loss of generality that the total length of the domain extends
in each coordinate direction over −1 < x < 1 (which is then scaled appropriately to obtain
the physical length L), and we define a buffer length, �, such that the near field extends
−� < x < 1 − �. We consider functions which are symmetric about x = 0 but note that this
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FIG. 2. Plot of window function in the buffer region, with different values of s.

can be readily generalized if it is desired to have buffers with different extents at either edge
of each coordinate. A simple choice of function which gives the desired behavior is

h(x) = 1

2

(
tanh

(
2s

[
x + 1 − �/2

�

])
− tanh

(
2s

[
x − 1 + �/2

�

]))
, (30)

where the dimensionless constant s controls the maximum slope of the window in the buffer
as well as the curvature of the window near the edges of the buffer (see Fig. 2). Other choices,
such as error functions or piecewise polynomials, are certainly possible, but they will give
similar performance once they are scaled similarly. Moreover, functions that are continu-
ously differentiable (such as tanh) are preferable when spectral discretization methods are
to be used, as is done here. If spectral accuracy is desired, then the window function (30)
should also be periodic to machine precision. Such a window can be constructed from the
present one by adding a series of its periodic images. Because of the exponential nature of
the window function, one image on either side of the domain is sufficient to give smooth
behavior at the edge.

Since we have scaled the domain to vary over −1 to 1, we also have that � = 2Nbf/Ntot,
where Nbf and Ntot are the number of grid points (in the given coordinate direction) in each
buffer and over the total domain, respectively. Thus � is also a measure of the computational
expense of adding the buffer. As the buffer size increases indefinitely we obtain the exact
infinite domain result (with perfect resolution and infinite expense). Thus the important
question is how small can � (or Nbf ) be to obtain sufficiently accurate results? This is
addressed through experimentation in the next section.

In the present choice of window function, the slope of the buffer function, s, must also be
specified. In the context of the tanh functions used here, large values of s cause the variation
of h from 0 to 1 to occur in a narrow bands centered at ±1 ∓ �/2. It is undesirable to choose
too large a value, as this simply adds additional points to the near field (where h = 1) and
wastes points near the edge of the domain (where h = 0). On the other hand, too small a
value will cause the buffer to spill over into the near field and not fall to zero at the edge.
Based on Fig. 2 it can be seen that values between 2 and 4 fall into this intermediate range;
through experimentation we have noted little difference in performance with s in this range.
In computations presented in the next section we have used a conservative value of s = 4.
It is also shown in the Appendix that larger values of s also have a deleterious impact on
the maximum stable time step (when explicit time advancement is used).
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4. EXAMPLES

In this section, we report the results of several tests of the numerical method on relatively
simple flows. In all the examples we take a viscous compressible flow of a calorically
perfect gas with � = 1.4 and use zero bulk viscosity and other transport coefficients that
vary according to Sutherland’s law. In all the examples we use a Fourier spectral collocation
method for evaluation of spatial derivatives together with explicit fourth-order Runge–Kutta
time advancement in Eq. (29). Products involved in forming Fj were dealiased according
to the 3/2 rule, as were the product of Fj with the window function and its gradients.
Evaluation of Fj also requires division by the density, which is not dealiased. Specific
numbers of grid points and domain sizes are given for each problem. We used a maximum
CFL number of 0.5 in all computations. A discussion of time-step constraints associated
with the buffer is given in the Appendix.

4.1. Propagation of a Nearly Linear Acoustic Pulse

We examine first the absorption of two-dimensional small-amplitude acoustic waves in
an otherwise uniform flow, with a mean Mach number equal to 0.5. The configuration has
become a standard figure of merit for ABCs: an initially Gaussian pressure pulse radiates
out from the center of the computational domain. In what follows lengths are scaled to the
width of the initial pulse. Hence the pressure is initialized as

p(x, 0) = p∞ + A exp

(
−
(

x2
1 + x2

2

L2

))
, (31)

where A is set to 10−4 so that the acoustics are effectively linear. The velocities are initialized
to zero. The Reynolds number, a∞L/�∞ = 105, and viscous effects are unimportant over
the small propagation distances considered.

The physical region of the domain extends to ±8L , with a uniform grid of 81 × 81 points
(and thus a mesh spacing of 0.2L in each direction). We use three different buffers, with
Nbf = 10, 20, and 30 points in each direction, with corresponding buffer lengths (on either
side of the box) of 2, 3, and 4. For reference, we plot the solution at several early instants in
time (for Nbf = 20) in Fig. 3. The 5% pulse width (i.e., the length scale at which the pulse is
contained by contours of ±5% of its initial amplitude) can be seen to be on the order of 4L
just prior to interaction with the buffer, and so the buffer is smaller than the pulse (3L in the
present case). Nevertheless, the pulse exits the physical domain with only small reflection.

The actual reflection error is now quantified in a series of comparisons with other ABCs.
An exact solution, in the linear case, may be written down in terms of integrals, but it is
more useful here to compute the error by simulating the solution on a domain that is suffi-
ciently large that no reflections occur over the time interval of the test. This allows errors
associated with the boundary condition to be isolated from the general discretization error.
We compare the runs described above with a 400 × 400 node calculation with the same
near-field grid spacing, and Nbf = 10 (the buffer in the large calculation being irrelevant).
We have also computed, using a compact fourth-order finite-difference scheme (e.g., [16])
together with fourth-order Runge–Kutta time advancement, the solution obtained using sev-
eral other boundary conditions. These include ABCs based on the Fourier/Laplace method
[26], the one-dimensional characteristic boundary conditions (that are the linearization of
those proposed by Thompson [31]), and, finally, the PML buffer layer approach.
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FIG. 3. Contours of the perturbation pressure at various instants in time (normalized by the ambient speed
of sound and pulse width, L). Sixteen isocontours of pressure between −0.05 and 0.05, relative to the initial
amplitude, are plotted. Nbf = 20. The square box to ±8L indicates the boundary of the physical portion of the
calculation.

For the Fourier/Laplace technique, we use a Padé rational function approximant to the
square root operator that appears (in Fourier space) in the BC. Specifically we use the (0,0)
and (2,2) Padé approximants to the square root [26]. The (0,0) approximation is equivalent
to the earlier ABC of Giles [10]. In using the Fourier/Laplace ABC, problems can arise at
the corner points, and in the present case we have simply written the ABC as a closure for
the derivatives normal to the boundaries and applied both BCs at the corner points. This
appears to be stable, for the present flow, but is unstable for higher Padé approximants.

The PML layer tests were conducted by Matt Barone (Stanford University) following
the implementation by Abarbanel et al. [2]. All parameters chosen were identical to those
that the authors used in the test cases they presented, except that the layer strength was
changed to Cx = Cy = 0.5, which gave the best results with Nbf = 20. It was noted that the
results were not very sensitive to this parameter provided that 0.25 ≤ Cx ≤ 1.0. The PML
layers were closed with the one-dimensional characteristic boundary conditions discussed
above. One case was run with (0,0) Padé boundary conditions but the results were virtually
identical.

The results of all of the comparisons are plotted in Fig. 4. We plot the sum of the rms error
in the fluctuations in u, v, and p. The error is measured by comparison with simulation on a
much larger domain, as discussed above. For the buffer conditions, the rms is taken over the
physical portion of the domain only, x, y ∈ ± 8L . For the nonbuffer ABC, we make the do-
main 101 × 101 nodes with x, y ∈ ± 10L , but again compute the rms error only over the
region x, y ∈ ± 8L . This facilitates comparison since the run times will be similar for the
nonbuffer ABCs and the buffer ABCs with Nbf = 20. It is clear that the present approach
gives a smaller initial reflection (around ta/L = 10) than does PML with the same number
of points in the buffer layer; with Nbf = 30 it outperforms even the most accurate local
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FIG. 4. The reflection error due to several different boundary conditions.

boundary conditions (the (2,2) Padé). This trend is also continued for long times, where
the characteristic boundary conditions saturate at a high level of error while most of the
other conditions tested have decaying error. Examining the solution at these times indicates
that very little coherent signal is present in the domain; the solution is composed of short-
wavelength modes that are continuously reflected by the boundaries and only damped slowly
due to a slight dissipation associated with the time-marching scheme (see [26]) for a detailed
discussion of these short-wavelength errors).

Finally, it may be noted that comparison of similar sets of boundary conditions (charac-
teristic boundary condition, PML, and stretching/filtering) have been made in the context
of electromagnetic wave scattering [13, 34]. There it was found that PML and stretching/
filtering layers gave similar results, in both cases superior to characteristic-based conditions.
It would appear that the present buffer layer formulation could also be readily applied to
electromagnetic scattering problems, though we have not yet attempted to do so.

4.2. Advection of a Strong Vortex

We consider a vortical disturbance advecting in an otherwise uniform flow. We choose a
zero-circulation vortex [5] since the velocity field associated with the vortex decays rapidly
enough to localize the vorticity in a compact computational region. For inviscid flow, such
a vortex is an exact solution of the governing equations for an arbitrary (axisymmetric)
distribution of density in the vortex, provided that the pressure in the vortex is found by
integrating:

∂p(r )

∂r
= � (r )v	(r )2

r
. (32)

In what follows L now refers to the radius of the vortex (the location where the tangen-
tial velocity reaches a maximum), and we define the strength as the maximum tangential
perturbation velocity, Vmax, divided by the free-stream velocity in which it advects, U . A
similar test was described in [4], where Giles’ [10] ABCs were applied to linearized (about
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FIG. 5. Normal velocity at the center of the domain for vortex propagation with strength Vmax/U equal to
0.005 (——), 0.05 (- - - -), 0.5, (– - –), 1.5, (· · · · · · · ·). The uniform background flow has M∞ = 0.2.

the uniform base state) equations at the boundary. It was found that as the vortex advected
out of the domain, the acoustic reflections, whose amplitude scaled with the square of the
amplitude of the vortex, were produced. A similar test was also used to compare Thompson
[31] BC and the buffer zone proposed by Freund [8].

In Fig. 5, the normal velocity at the center of the domain is plotted versus time for a
variety of strengths Vmax/U ranging from 0.005 to 1.5, all with M∞ = 0.2, compared to
the exact solution. For these cases, the physical portion domain extends to ±20L of the
initial position of the vortex and ±10L in the spanwise direction, and Nbf = 10. The grid
spacing is 0.1333L in both directions. Note that for the strongest case, there is a region
of backflow at the downstream boundary as the vortex passes from the domain, since the
maximum vortex velocity is greater than the advection velocity. Such a backflow represents
a significant challenge for ABCs that depend on a labeling of incoming and outgoing
disturbances (which would change as the velocity normal to the boundary changes sign at
the boundary). Note that the normal velocity has been divided by Vmax in the plots. The first
bump in the curves occurs as the rear half of the vortex passes the center of the domain,
shortly after the initialization. The vortex leaves the physical domain (entering the buffer
region) around tU/L ≈ 20 and produces a small acoustic reflection, which arrives back at the
origin around tU/L = 25, i.e., the second bump in the curves. Thus the acoustic reflection is
about two orders of magnitude smaller than the vortex velocity, which is good performance
considering that the extent of the buffer region amounts to 10 × 0.1333L = 1.333L , just
over half the total extent of the vortex.

In Fig. 6 the results are compared with the buffer treatment of Freund [8] and a simulation
on a much larger domain that serves as an uncontaminated solution for comparison. As in
[8], we take M∞ = 0.75 and Vmax = 0.6, and here the grid spacing in the near field was
�x = �y = 0.0667L . All parameters for Freund’s buffer are taken from the example in [8].
In the figure, the integral of the kinetic energy (not including the base flow) over the physical
portion of the computational domain (total domain less the buffer) is plotted relative to its
initial value. For the inviscid vortex, this quantity would drop to zero exponentially fast
as the vortex leaves the domain. Here we have taken Re = UL/� = 7500, and as the initial
condition is not a solution of the viscous equations, there is a (small) acoustic transient
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FIG. 6. Comparison of the buffer treatment of Freund [8] (- - - -, with L/D = 2.0, 4.2, and 7.2) with present
results (——, with L/D = 0.833, 2.53, 4.17, 6.17, and 7.5) and the solution on a much larger domain (– - –). E
is the integral of the kinetic energy (not including the base flow) over the physical portion of the computational
domain.

wave that also propagates out of the domain. This gives rise to the slower decay of kinetic
energy after the vortex leaves the domain around time tU/L = 5. With a buffer of size
Lbf = 0.833L (Nbf = 12), almost 99.9% of the kinetic energy is removed, and this is brought
down by another order of magnitude for a buffer of extent Lbf = 2.53L , which is comparable
to the roughly 99.99% energy removed for Freund’s result with the same buffer size. We see
some evidence of slow convergence, or saturation, in the accuracy of both buffer treatments
as Lbf is increased indefinitely, but practically speaking, results with Lbf = 2 to 4L are
adequate.

4.3. Two-Dimensional Starting Jet

As a final example, we consider the two-dimensional (planar), viscous, starting jet that is
created by an applied body force in the x1 direction that is impulsively switched on at t = 0.
The body force, fb, is nondimensionalized with L , the half width of the jet, and the ambient
sound speed, a∞, is a specified patch extending to ±L in the x2 direction and smeared over
a distance 
:

L�∞ fb

a2∞
= A

2

(
1 − tanh

(
x2/L − L/x2

2
/L

))
exp− x2

1



. (33)

We have run several cases with different parameters associated with the forcing and the
computational domain (see Table I).

TABLE I

Physical and Computational Parameters for Starting Jets

Run A 
 N1 N2 Nbf x1 min x1 max x2 min x2 max Re = a∞ L/�∞

1 0.7 0.2 340 170 10 −6 15 −4 4 2,500
2 0.7 0.2 340 170 10 −1 9 −2.5 2.5 10,000
3 0.7 0.2 340 170 20 −1 9 −2.5 2.5 10,000
4 0.7 0.2 512 340 10 −3 13 −5 5 10,000
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FIG. 7. A series of snapshots showing the vorticity during evolution of a two-dimensional impulsively started
jet. Only the physical region of the computational domain is plotted.

An impulsive body force of this sort produces a leading vortex pair that pinches off from
a trailing jet. The formation a the leading vortex ring (in the axisymmetric case) has been
studied previously in experiments [25] and in computations that used a similar body force
[21]. The toroidal radius of the ring is L and the leading ring is invariant to 
 provided 
/L
is small. Meanwhile 
 directly controls the thickness of the mixing layers in the trailing jet.
The development here, in the planar case, follows closely these previous studies. A series
of snapshots for Run 1 in Fig. 7 show the development and pinch off of the leading vortex
pair, and the subsequent development of a trailing jet. The flow is essentially steady at the
last frame shown in the figure. The figure shows qualitatively the leading vortex pair and
trailing jet being absorbed by the boundary at the right (an earlier acoustic transient at early

FIG. 8. Comparison of computations with different computational parameters.
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times is also absorbed). It should be noted that the entire physical region is shown in the
frames; the leading vortex pair is a significant fraction of the total width of the computational
domain.

In Fig. 8, the streamwise velocity and normal velocity components are compared in-
stantaneously for Runs 2, 3, and 4, at a time when the center of the vortex pair is situated
near x = 5L . It can be seen that when Nbf is increased with the smaller domain, the results
approach the result from the larger domain.

5. SUMMARY AND EXTENSIONS

A buffer region technique for computing compressible flows on unbounded domains was
presented. The method was developed by exploiting an analogy with turbulence modeling:
the artificial boundary condition is interpreted as a super-grid-scale model for eddies that
propagate to distances larger than the mesh. Such a “near-eddy simulation” is analogous to
a LES (where the model dissipates those eddies smaller than the mesh), provided that the
roles of wave space and physical space are reversed.

The method is also closely connected with previous buffer techniques where mesh stretch-
ing and filtering and/or damping are employed. The chief differences are the modifications
to the flux term, and the fact that the model yields a specific form for an added damping
term in the buffer. An advantage of the present method is that it requires many fewer tunable
parameters than other schemes. This is because once near-field extent and grid spacing are
chosen (dictated by the relevant length scales of the problem under consideration), all that
remains is to choose a suitable window function, h(x), that falls from unity to zero over
the buffer region. Any reasonable (i.e., monotonic) choice will require specification of the
distance over which the window falls from unity to zero at the edge of the sponge, as well as
a parameter (such as the maximum slope of the window) that controls the curvature of the
window function near the edges. We suggest a particular window function, a combination of
tanh functions, with two adjustable parameters: the number of grid points across the buffer,
Nbf, to be user specified, and a parameter that controls the maximum slope of the window in
the buffer, s, for which we suggest the range 2 < s < 4. As was demonstrated in the model
problems, Nbf is inversely proportional to the accuracy (i.e., magnitude of reflection) of the
results, and directly proportional to the additional cost of the buffer. This presents the user
with a simple trade-off of cost versus accuracy.

With Nbf > 10, the method was found to be quite accurate. For linear acoustic waves,
the present treatment is more accurate than the PML technique for the same number of
grid points in the buffer region. For passage of a strong (nonlinear) vortex propagating in
an otherwise uniform flow, the method gave similar results to a previous buffer treatment
[8]. It was shown that the present treatment leads to reflections that scaled linearly with
the strength of the vortex, even when the maximum tangential velocity associated with
the vortex was greater than the uniform background velocity (such that even an outflow
boundary would feel a negative velocity during passage of the vortex).

For all of the model problems considered here, a dealiased Fourier pseudospectral scheme
was used. But the equations for the buffer region were presented in real space and could be
used with any discretization of the governing equations. Nevertheless, the use of the spectral
method here shows that absorptivity of the buffer region was sufficient to prevent any peri-
odic images from penetrating the domain. Spectral computations of compressible turbulent
flows offer significant advantages over other schemes (e.g., high-order finite difference),
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including the ability to dealias nonlinear products, which is advantageous in large-eddy
simulations.

Finally, the method is suitable for any number of infinite coordinate directions and could
in principle be applied in combination with other boundary conditions in other coordinate
directions (e.g., infinite strips or slabs). In addition, we showed in an example how it could
be used with a suitable body force to model a starting jet (without nozzle). Such body forces
could allow further generalization of the method. For example, a general forcing term of
the form

−�(Q − Qtarget)

was used (in a finite-difference context) by Freund [9] to simulate the nozzle conditions for
a turbulent jet. In this case the forcing is added to the right-hand side of the entire system of
equations (Navier–Stokes, continuity, energy). We speculate that similar forcing could be
used together with infinite coordinate directions and the present buffer region to simulate a
variety of flows.

APPENDIX: TIME-STEP CONSTRAINTS DUE TO BUFFER

We present here a straightforward von Neumann stability analysis that may be applied
to determine any impact of the buffer layers on the maximum permissible time step (when
explicit time advancement is used). The notation follows closely that in Section 3.6. We
consider Eq. (29) as a simple advection–diffusion equation in one-dimension by setting
F(Q) = atyp(Mtyp + 1)Q + � ∂ Q

∂x (with scalar Q) and replacing nonconstant coefficient terms
(such as those involving h(x)) with worst-case values.

Consider first the time-step constraint associated with explicit time advancement of F(Q).
It is easy to see that the presence of the buffer will lower the maximum time permissible
time step by an amount, p, where

p = max(h(x) + (�x)2h′′(x)). (34)

Using relations from the last section we find that the maximum is never greater than 1
provided that

�xs

�
<

√
2/2. (35)

Since we have scaled the total domain to −1 < x < 1, this can be rearranged to give

Nbf > 2s/
√

2, (36)

which is thus a requirement of Nbf so that there is no impact on the maximum permissible
time step (for the flux term). This is not very restrictive, requiring only six points when s = 4
(its maximum recommended value). For fewer buffer points p > 1 is given by a complicated
but irrelevant expression since the numerical experiments in Section 4 indicate that Nbf ≥ 10
is required for reasonable accuracy.

Now consider the effect of adding the dissipative term on the right-hand side of Eqs. (29)
and (28). For an explicit time advancement, the maximum time step for stability would be
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given by

�t <
c1(�x)2

c2�
, (37)

where c1 and c2 are O(1) constants associated the choice of time advancement and spatial
discretizations, respectively, and � is the maximum value of the coefficient in front of ∂2 Q̄

∂x2 .
Inserting this coefficient from Eqs. (29) or (28), and noting that the maximum value of |h′|
is s

�
, we obtain

�t <
c1(�x)Nbf

2c2s atyp(Mtyp + 1)
. (38)

This term scales with �x . If the actual time step used gives a CFL number, C , for the
advective part of the flux term, then

(�t)CFL = C�x

atyp(Mtyp + 1)
, (39)

where C must be chosen low enough to ensure both stability and accuracy independent of
any buffer consideration. In order that the buffer stability constraint not lower than the time
step, we require

�t < (�t)CFL. (40)

Combining Eqs. (38) and (40) gives the constraint

Nbf >
2Cc2s

c1
. (41)

If we use spectral spatial discretization (c2 = �2) and fourth-order Runge–Kutta time
advancement (c1 ≈ 2.8), then with s = 4 we obtain Nbf > 28C . For second-order finite-
difference discretization, c2 = 4 and Nbf > 11C . These numbers indicate that for relatively
small buffers, C must be decreased in order to avoid instability in the buffer region or,
conversely, that the buffer size must be increased if C is fixed. It is also interesting that the
constraint depends on Nbf regardless of the total extent of the domain (or the grid spacing).
We have found that in numerical experiments the scaling represented by Eq. (41) is obeyed
but that the constants are somewhat conservative. For example with the spectral scheme
used in the examples, Cmax = 0.9, and with Nbf = 10 and s = 4 we found instability when
C was increased beyond 0.5 (whereas the formula would have predicted 0.35).
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